Определение натяжений нагруженного несущего троса для действительных пролетов, входящих в анкерный участок
(5.17)
где
t1- минимальная температура, С.
g1-вес проводов цепной подвески, даН/м
l- длина эквивалентного пролета, м
Ет- модуль упругости, кг/мм2
Sт- площадь сечения несущего троса, мм2
Подставляя в это уравнение различные значения Тх, определим соответствующую им температуру.
При Тх=2000 кг
![]()
Далее меняя Тх получаем следующие данные:
|
Тх, кг |
2000 |
1738 |
1607 |
1512 |
1450 |
1407 |
1345 |
1283 |
1200 |
1000 |
900 |
800 |
589 |
|
tx, С |
-50 |
-49 |
-46 |
-43 |
-40 |
-38 |
-36 |
-33 |
-30 |
-20 |
-14 |
-3 |
40 |
Таблица 5.5 - Зависимости натяжения от температуры.
По этим данным строим график
Рисунок 4- Натяжение нагруженного несущего троса для эквивалентного пролета
Определение стрел провеса от нагрузок
Определение стрел провеса несущего троса для действительных пролетов, входящих в анкерный участок
, м (5.18)
Где g- вес проводов контактной подвески, даН/м
gт- вес несущего троса, даН/м
К- натяжение несущего троса, даН/м
Т0- натяжение несущего троса при беспровесном положении, даН/м
L-длина пролета, м
e- расстояние от опоры до первой струны, м
Определение стрел провеса контактного провода для действительных пролетов входящих в анкерный участок.
, м (5.19)
Определяем изменение высоты расположения контактного провода у опоры
, м (5.20)
Подсчитанные данные сносим в таблицу 5.6
Таблица 5.6 – Зависимости стрел провеса от нагрузок
|
tx С |
L=60м |
L=50м |
L=46м | ||||||
|
Fx |
fкх |
∆hех |
Fx |
fкх |
∆hех |
Fx |
fкх |
∆hех | |
|
-50 |
0,39 |
-0,0427 |
-0,097 |
0,28 |
-0,024 |
-0,077 |
0,243 |
-0,0181 |
-0,068 |
|
-44 |
0,41 |
-0,037 |
-0,084 |
0,295 |
-0,0207 |
-0,061 |
0,253 |
-0,0154 |
-0,06 |
|
-38 |
0,433 |
-0,0308 |
-0,072 |
0,301 |
-0,0171 |
-0,057 |
0,27 |
-0,0133 |
-0,051 |
|
-32 |
0,465 |
-0,024 |
-0,057 |
0,333 |
-0,0136 |
-0,045 |
0,285 |
-0,0096 |
-0,04 |
|
-26 |
0,492 |
-0,0172 |
-0,042 |
0,345 |
-0,0097 |
-0,033 |
0,305 |
-0,0068 |
-0,029 |
|
-20 |
0,525 |
-0,0097 |
-0,025 |
0,375 |
-0,0053 |
-0,019 |
0,323 |
-0,0043 |
-0,017 |
|
-14 |
0,561 |
-0,0031 |
-0,09 |
0,398 |
-0,0015 |
-0,086 |
0,343 |
-0,0011 |
-0,08 |
|
-8 |
0,605 |
0,0052 |
0,092 |
0,428 |
0,0028 |
0,079 |
0,365 |
0,0021 |
0,07 |
|
-2 |
0,645 |
0,013 |
0,034 |
0,455 |
0,0066 |
0,026 |
0,387 |
0,0052 |
0,024 |
|
4 |
0,69 |
0,0196 |
0,055 |
0,487 |
0,0114 |
0,044 |
0,413 |
0,0086 |
0,039 |
|
19 |
0,815 |
0,0386 |
0,113 |
0,57 |
0,022 |
0,092 |
0,483 |
0,0166 |
0,081 |
|
40 |
1,03 |
0,0629 |
0,208 |
0,698 |
0,0354 |
0,166 |
0,598 |
0,0268 |
0,16 |
Актуально о транспорте
Подбор технологического оборудования
Таблица 4.3 - «Технологическое оборудование» Наименование Кол Тип и модель Размер в плане, мм Общая площадь, м2 Приспособление для правки замочных колец 1 383×620 0,23 Станок для очистки ободьев дисков 1 1100×1100 0,06 Сушильная камера 1 1500×1500 2,25 Стенд для монтажа колес 1 13 ...
Расчёт станционных и межпоездных интервалов
Исходные данные: - длина входной горловины, Lвх = 800 м; - длина тормозного пути, Lм = 1100 м; - длина поезда, Lп = 800 м; - средняя скорость движения на однопутном участке, Vср = 55 км/ч; - длина блок-участков: Lбл’ = 2500 м, Lбл’’ = 2000 м, Lбл’’’ = 2300 м; Станционным интервалом неодновременного ...
Расчёт остойчивости
Таблица 6 θ° 10° 20° 30° 40° 50° 60° 70° lф 1.29 2.60 3.77 4.76 5.55 5.97 6.20 sinθ° 0.1736 0.3420 0.5000 0.6428 0.7660 0.8660 0.9397 1.18 2.33 3.41 4.39 5.23 5.91 6.41 lст = lф – lв 0.10 0.26 0.36 0.38 0.32 0.07 -0.21 0.10 0.47 1.09 1.82 2.52 2.91 2.77 0.01 0.04 0.09 0.16 0.22 0.25 0.24 ...